The Expected SARSA Algorithm
- model free algorithm
- same as SARSA algorithm, but in addition, takes action sampling probabilities into account
Expected SARSA Example Implementation
Please see my Svelte TD Learning Repository for the complete code and the interactive Gridworld Examples for more information.
const ExpectedSarsaQTableUpdate = (state, a, r, stateNext, aNext) => {
let g;
if (mazeComp.isTerminal(stateNext)) {
g = r;
} else {
let vNextExpected = 0.0;
let prob;
// aNext is not used to calculate the expected next state value
// each action has a base probability to be selected of epsilon divided
// by the number of actions (random action selection case of e-greedy)
prob = epsilon / numA;
for (let a = 0; a < numA; a++) {
vNextExpected += prob * mazeComp.getQValue(stateNext, a);
}
// the maximum Q action has a probability of (1 - epsilon)
// to be selected (greedy action selection case of e-greedy)
prob = 1.0 - epsilon;
let aNextGreedy = mazeComp.getPolicy(stateNext);
vNextExpected += prob * mazeComp.getQValue(stateNext, aNextGreedy);
// G with respect to expected value V of next state
g = r + gamma * vNextExpected;
}
let q = (1.0 - alpha) * mazeComp.getQValue(state, a) + alpha * g;
mazeComp.setQValue(state, a, q);
};
const runExpectedSarsaEpisodeStep = (state, a) => {
let stateNext;
let aNext, r;
if (mazeComp.isTerminal(state)) {
runEpisode(); // run next episode (calls runExpectedSarsaEpisode)
} else {
stepTimer = setTimeout(() => {
[stateNext, r] = mazeComp.step(state, a);
aNext = mazeComp.getEpsilonGreedyAction(stateNext, epsilon);
ExpectedSarsaQTableUpdate(state, a, r, stateNext, aNext);
state = [...stateNext];
a = Number(aNext);
runExpectedSarsaEpisodeStep(state, a);
}, 0);
}
};
const runExpectedSarsaEpisode = () => {
let state = mazeComp.getRandomStartState();
let a = mazeComp.getEpsilonGreedyAction(state, epsilon);
runExpectedSarsaEpisodeStep(state, a);
};